Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract PremiseSphagnum magellanicum(Sphagnaceae, Bryophyta) has been considered to be a single semi‐cosmopolitan species, but recent molecular analyses have shown that it comprises a complex of at least seven reciprocally monophyletic groups, that are difficult or impossible to distinguish morphologically. MethodsNewly developed barcode markers and RADseq analyses were used to identify species among 808 samples from 119 sites. Molecular approaches were used to assess the geographic ranges of four North American species, the frequency at which they occur sympatrically, and ecological differentiation among them. Microhabitats were classified with regard to hydrology and shade. Hierarchical modelling of species communities was used to assess climate variation among the species. Climate niches were projected back to 22,000 years BP to assess the likelihood that the North American species had sympatric ranges during the late Pleistocene. ResultsThe species exhibited parallel morphological variation, making them extremely difficult to distinguish phenotypically. Two to three species frequently co‐occurred within peatlands. They had broadly overlapping microhabitat and climate niches. Barcode‐ versus RADseq‐based identifications were in conflict for 6% of the samples and always involvedS. diabolicumvs.S. magniae. ConclusionsThese species co‐occur within peatlands at scales that could permit interbreeding, yet they remain largely distinct genetically and phylogenetically. The four cryptic species exhibited distinct geographic and ecological patterns. Conflicting identifications from barcode vs. RADseq analyses forS. diabolicumversusS. magniaecould reflect incomplete speciation or hybridization. They comprise a valuable study system for additional work on climate adaptation.more » « less
- 
            Abstract The use of species as a concept is an important metric for assessing biological diversity and ecosystem function. However, delimiting species based on morphological characters can be difficult, especially in aquatic plants that exhibit high levels of variation and overlap. The Sphagnum cuspidatum complex, which includes plants that dominate peatland hollows, provides an example of challenges in species delimitation. Microscopic characters that have been used to define taxa and the possibility that these characters may simply be phenoplastic responses to variation in water availability make species delimitation in this group especially difficult. In particular, the use of leaf shape and serration, which have been used to separate species in the complex, have resulted in divergent taxonomic treatments. Using a combination of high-resolution population genomic data (RADseq) and a robust morphological assessment of plants representing the focal species, we provide evidence to evaluate putative species in this complex. Our data support the recognition of S. cuspidatum, S. fitzgeraldii, S. mississippiense, and S. trinitense as genetically distinct species that can be separated morphologically. These results indicate that S. viride does not differ genetically from S. cuspidatum. Our results are broadly relevant to other aquatic groups where leaf shape and marginal teeth are used to distinguish species.more » « less
- 
            Abstract Background and AimsSphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300–500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. MethodsFour hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. Key ResultsAll four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. ConclusionsThese four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.more » « less
- 
            Abstract Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging—if not impossible—without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands—globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.more » « less
- 
            Martiny, Jennifer B. (Ed.)ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands.more » « less
- 
            Abstract Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates.Sphagnum(peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of twoSphagnumspecies:S. divinumandS. angustifolium.Sphagnumgenomes show no gene colinearity with any other reference genome to date, demonstrating thatSphagnumrepresents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability ofSphagnumto sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.more » « less
- 
            Stajich, Jason E. (Ed.)ABSTRACT We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
